Thursday, February 7, 2013

Squeeze Theorem Proof


The proof is a correct demonstration of math statement. It should be true. The proof of one statement is used in other statement proof. The limits of a function are defined by squeeze theorem. We can also refer the squeeze theorem as sandwich theorem or pinching theorem. Now we are going to see about squeeze theorem.

Explanation for Squeeze Theorem Proof

Define squeeze theorem:

In calculus, the squeeze theorem is used and we can analyze the function’s limits by using this theorem. The interval ‘I’ is including the point ‘a’. The functions f, g and h are derived by interval ‘I’. We gets the function as g(x) `lt=` f(x) `lt=` h(x) if we have unequal 'x' values present. In other words, the definition is `lim_(x->a)` g(x) = `lim_(x->a)` h(x) = L. Final result is `lim_(x->a)` f(x). The lower bound g(x) and upper bound h(x) are used to bounds the f(x). We does not including the value 'a' in the interval 'I'.

I like to share this Calculus Limits with you all through my article.

More about Squeeze Theorem Proof

The squeeze theorem proof is derived by previous statements and the proof of this theorem is using the special case and general notations.

Using the special cased for squeeze theorem proof:

The special case is g(x) = 0 for all x and L = 0.

First prove the special case as,

Let us take the special case as `lim_(x->a)` h(x) = 0.

Use the fixed positive number ε > 0 and δ > 0 from limits of function.

if 0 < | x-a | < δ then |h(x)| < ε.

Take the terms from above interval and the terms are 0 = g(x) `<=` f(x) `<=` h(x). So | f(x) | `<=` | h(x) |.

The conclusion of theorem is if 0 < | x-a | < δ then | f(x) | `<=` | h(x) | `<` ε.

Final proof of squeeze theorem by above condition is `lim_(x->a)` f(x) = 0 = L.

Use the general notations for squeeze theorem proof:

The g and L are arbitrary and these are used for proof. We have g(x) `<=` f(x) `<=` h(x).

Subtract the g(x) from both sides as 0 `<=` f(x) - g(x) `<=` h(x) - g(x).

Let us take x--> a and g(x) and h(x) as 'L'.

Therefore, h(x) - g(x) --> L - L = 0.

The special case is used in theorem conclusion as f(x) = (f(x) - g(x)) + g(x) --> 0 + L = L.

Hence the sandwich theorem is proved.

Wednesday, February 6, 2013

Metric Calculator


Metric number line is one of the important topics on the metric number system in mathematics subject. The quantities used to find lengths, capacities, weights of things etc are called measures. Many Countries have their own system of measures. But Metric System of measures is very simple and easy To calculate. Hence most countries in the world use Metric System of measures.

In Metric System,

  • Length’s basic unit is metre(m)
  • Weight’s basic unit is gram(g)
  • Capacity‘s basic unit is litre(l)


And Another name of metric system is decimal system.

I like to share this Metric Unit Converter with you all through my article.

Explanations of the Metric Number Line:
  • The metric system is used in all the places of the world, because of its superior basis metric units are linked to each other by factor of 10.
  • So while we convert one metric unit to another, we have to move the decimal point in the unique value.
  • These metric number lines give us an easy way to do these unit conversions.
metric number line

Metric units Names and Abbreviations are given below:
  • Centi-meter = cm
  • Milli-meter = mm
  • Kilo-meter = km
  • Mega meter = Mm
  • Decimeter = dm
  • Dekameter = dam
  • Hectometer = hm
  • Micrometer = mcm
  • Meter = m
  • Liter = L
  • Grams = g
  • Volt = v
The above names of units are important. And those all units are different like meter is length, liter is volume, gram is mass or weight.

Metric Number Line Units:
  • In number line we can forever multiply the unit by a factor of 10.
  • Let us make the number line and use unit as the basic unit.
  • Then we can use the metric number line for all units.
  • The unit could be decigrams, deciliters, decimeters, decivolts, etc…
Example figure for metric number line:
metric number line


Ex :  Convert dekagrams (dag) to centigrams (cg) :

metric number line

The above figure represents the example of converting metric numbers from line, here we have to choose the start point to end with stop point. Here we note two things, there is

1. Direction and,

2. The number of points necessary to move to get the stop point.

Then we have to make the decimal changes into the original number consequently.

For the above number line, we have to move three places to the right direction.

metric number line

For ex it can be 4.5 dekagram means; it could be changed into 4500 cg. Because of moved three places to right direction.

Having problem with What is Geometric Mean Read my upcoming post, i will try to help you.
 
These all are the metric number line details.

Metric Calculator - Conversion Tables and Examples:

In decimal system  to concert a higher value into lower value then we need to multiply it by powers of ten and to convert lower value into a higher value then we need to divide the number by ten.

Let us discuss about linear measure  like measures of length,weight,capacity.

Length-Conversion Table:
10mm1cm
10cm1dm
10dm1m
10m1dam
10dam1hm
10hm1km
100cm1m
1000m1km



Weight - Conversion Table:
10mg1cg
10cg1dg
10dg1g
10g1dag
10dag1hg
10hg1kg
1000mg1g
1000g1kg
100kg1quintal(q)
1000kg1 tonne(ton)



Capacity / Volume :- Conversion Table:
10ml1cl
10cl1dl
10dl1l
10l1dal
10dal1hl
10hl1kl



Ex 1 : Convert 4 km into lower units.

Sol:

4 km = 40 hm (4 × 10) = 4 × 101 hm

= 400 dam (4 × 100) = 4 × 102 dam

= 4000 m (4 × 1000) = 4 × 103 m

=40000 dm (4 × 10000) = 4 × 104 dm

= 400000 cm (4 × 100000) = 4 × 105 cm

= 4000000 mm (4 × 1000000) = 4 × 106 mm

Ex 2: Express 1267547 mm into higher units.

Sol:


12675477 mm   = 126754.7cm[1267547/10]  =1267547 x 10-1 cm

=12675.47dm[1267547/100] =1267547 x 10-2 dm

= 1267.547m[1267547/1000] =1267547 x 10-3 m

=126.7547dam[12.6754]/10000  = 1267547 x 104 dam

=12.67547hm[1267547/100000]  =1267547 x 10-5 hm

=1.267547km[1267547/1000000] =1267547 x 10-6 km

Ex 3: Convert 7m into millimeter.

Sol:

We know that ,

1m =1000mm

Therefore ,7m  = 7*1000mm

=7000mm

Ex 4: Express 10kg5dag in grams

Sol:


We know that,

1kg   =1000g

1dag =10g

Therefore, 10kg5dag = 10 *1000g +5 *10g

=10000g +50g

=10050g

Understanding very hard math problems is always challenging for me but thanks to all math help websites to help me out.

Practice problem to help with metric calculation:

1)Convert 6m into millimetre.

Ans: 6000mm

2)Express 2769 g in kilograms.

Ans: 2.769 kg

3)Convert 25 kl 37 l into litres.

Ans: 25037 l

Monday, February 4, 2013

Definition Data Table


Let us see about definition data table. Generally, the data tables are made by the number of rows and the columns. In data table, the rows and columns are separated by the number of lines or line segments. In data table, each row and column has the data. Generally the data table is premeditated by the statistical graphs. The group of data can be creating the data table. Data tables are conniving by the graphs. The statistical graphs are depends on the data table. The data table rows are positioned as horizontal and the columns are positioned as vertical.

Examples of Data Table:

Let us see the example problems of data table.

Example 1:

Define the data table.

Name of petsNumber of students
Dogs80%
Cats20%
Fish64%
Parrot75%
Peacock64%
Dove29%
Sparrow34%


Solution:

The definition of data table is described below. The data table exhibits the name of pets and the number of students. The data table is defined by the bar graph.  Name of pets is represented as x-axis and the number of students is represented as y-axis.

bar graph table

This is the definition of data table.

I like to share this how to make a bar graph with you all through my article.


Example 2:

Define the data table.

ActivityNumber of students
Visit friends20%
Talk on phone15%
Play sports46%
Earn money50%
Use computers61%
Preparing multimedia31%
Playing cards21%
Doing home work11%


Solution:

The definition of the data table is defined below. The data table exhibits the activity and the number of students. The data table is defined by line graph.  Activity is represented as x-axis and the number of students is represented as y-axis.

line graph table

This is the definition of data table.

Having problem with Standard Deviation Table Read my upcoming post, i will try to help you.

One more Example of Data Table:

Define the sample data table.

YearNon-Employees rate
200012%
200145%
200231%
200361%
200455%
200572%
200681%
200774%
200894%
200975%
201095%


Solution:

The definition of the data table is described below. The data table exhibits the year and the non-employees rate. The data table is defined by the scatter plot graph.  The year is represented as x-axis and the non-employees rate is represented as y-axis.

scatter plot table

This is the definition of data table.

Friday, February 1, 2013

Trigonometry Xi


In this section we will see about trigonometry xi. Eleventh average trigonometry is also recognized as the division of the main dealing with trigonometry functions, angle, etc. It gives the association and angles in detail with their problems. Sine, Cosine and Tangent are the trigonometric meaning concerned in trigonometric semi position identity. We have worked problems and practice problems along with solution in below. Let us see about the topic trigonometry xi.

Solved Problems for Trigonometry Xi:

Let us see about the topic trigonometry xi,

Having problem with Sine and Cosine Read my upcoming post, i will try to help you.


Solved problem 1: Try to calculate the radius of the circle in which a central angle of 45 degree intercepts an arc of length 10 cm. (use π value as `22/7` )

Solution:

Given length = 10 cm and angle = 45 degree

θ = 45 degree = `(45Pi) / 180` = π/4

r = l/ θ

r = `(10 * 4) /Pi` = `(10 * 4 *7) / 22` = 12.72 cm

Therefore, the radius of the circle = 12.72 cm.

Answer: The radius of the circle = 12.72 cm.

Solved problem 2: If cos x = `1/5` , x lies in the first quadrant. Carry out step of the values of other five trigonometric functions.

Solution:

Given cos x = `1/5` , therefore, sec x = 5

We know that,

sin2 x + cos2 x = 1, that is sin2 x = 1 – cos2 x

sin2 x = 1 - `1/5` =`4/5`

sin x = ± `2/(sqrt 5)` (take square root on both sides)

x lies in 1st quadrant, sin x is negative.

Therefore, sin x = `2/(sqrt 5)` which also gives

cosec x = `2/(sqrt 5)`

Further, we have tan x = `(sin x)/(cos x)` = `(5(sqrt 5))/2` and cot x = `(cos x) /(sin x)` = `(2)/(5(sqrt 5))`

Answer: sec x = 5, sin x = `2/(sqrt 5),` cosec x = `2/(sqrt 5)` , tan x = `(5(sqrt 5))/2` , cot x =`2/(5(sqrt 5))`



Practice Problems for Trigonometry Xi:

Let us see about the topic trigonometry xi,

Practice problem 1: Determine the value of cos (370°).

Practice problem 2: Find the value of sin 5pi/3.

Solutions for prepare for trigonometry xi:

Solution 1: The value of cos (370°) is 0.98.

Solution 2: The value of sin 5pi/3 is -0.87.

I like to share this syllabus for iseet exam 2013 with you all through my article.

Thursday, January 31, 2013

Solving Online Calculus Optimizing Problems


Study of rate of transformation is called calculus. Study of optimization calculus or mathematical encoding is disturbed to influence the excellent element from the group of elements. Optimization is a single technique to obtain a maximum or minimum value of a function. The smaller value of the function is known as minimum. The greater value of the function is known as maximum.

Online has emerged as one of the main key source for students to increase their knowledge topic wise.

Examples to Solving Online Calculus for Optimizing Problems:

Solving online calculus for optimizing example problems 1:

`y = 3x^2 - 5x` , solving for x and y for the optimizing calculus problems.

Solution:

Step 1: Equation is` y = 3x^2- 5x`

Step 2: Differentiate with respect to x

`dy / dx` = 6x - 5

Equate `dy / dx ` to 0.

`dy / d` x = 6x - 5 = 0

6x = 5

x = `(5) / 6` or   0.83

Step 3: Plug x = 0.83 in the given equation

y = `3 (0.83) ^2- 5(0.83)`

= 3(0.6889) - (4.15)

= 2.06 - 4.15

= -2.09

Therefore, x = 0.83 and y = -2.09

Step 4: From the given equation plot the graph and mark out the points in the graph.

Graph to study optimizing problem



Solving Online Calculus for Optimizing Example Problems 2:

`y = 5x^2 - 19x,` solving for x and y for the optimizing calculus problems.

Solution:

Step 1: Equation is `y = 5x^2- 19x`

Step 2: Differentiate with respect to x

`dy / dx ` = 5x - 19

Equate `dy / dx` to 0.

` dy / dx` = 10x - 19 = 0

10x = 19

x = `(19)/10`  or 1.9

Step 3: Plug x = 1.9 in the equation

y = `5(1.9) ^2- 19(1.9)`

= 5(3.61) - 36.1

= 18.05 - 18.05

= -18.05

Therefore, x = 1.9 and y = -18.05

Step 4: From the given equation plot the graph and mark out the points in the graph.

Graph to study optimizing problem

I like to share this calculus problems with you all through my article.

Solving Online Calculus for Optimizing Example Problems 3:

`y = 4x^2- 7` , solving for x and y for the optimizing calculus problems.

Solution:


Step 1: The given equation is `y = 4x^2- 7`

Step 2: Differentiate with respect to x

`dy / dx ` = 8x

Step 3: Equate `dy / dx` = 0

8x = 0

x = 0

Step 4: Thus, `y = 4(0) ^2-7`

y = -7

So, x = 0 and y = -7.

Step 4: From the given equation plot the graph and mark out the points in the graph.

Graph to study optimizing problem

Wednesday, January 30, 2013

Same Perimeter Different Area


Perimeter is nothing but the path around the shape. And area is nothing but the space occupied by the 2 dimensional object. Here we are going to deal with the same perimeter and different area of the shape. Every shape is having different formulas for area. And for all shape if we want to find the perimeter we have to add the length of all sides. We will see some example problems for same perimeter and different area.

Having problem with How do you Find the Perimeter of a Triangle Read my upcoming post, i will try to help you.

Example Problems for same Perimeter and Different Area:

Example 1 for same perimeter and different area:

Same perimeter and different area

Find the area and perimeter of the following shapes and compare the area and perimeter.

Solution:

Shape 1:

The first shape is a rectangle. We know the area of the rectangle is l X w

Here length l = 3 cm and the width w = 4 cm

So the area of the rectangle = 3 X 4 = 12 cm2

Perimeter of the rectangle is = 2 (l + w) = 2 (3 + 4) = 2 X 7 =14 cm.

Shape 2:

The shape 2 is a triangle. To find the area of the triangle we have to use the following formula.

Area of the triangle = (`1 / 2` ) bh.

From the above b = 7 cm and h = 2 cm.

So the area =` (1 / 2) xx 7 xx 2 ` = 7 cm2

Perimeter of the triangle   = sum of all sides = 7 + 4 +3 = 14 cm.

From the above bath shape is having the same perimeter and different area.

Understanding factoring algebra problems is always challenging for me but thanks to all math help websites to help me out.

Example 2 for same Perimeter and Different Area:

Find the area and perimeter of the following shapes and compare the area and perimeter.

Same perimeter and different area

Solution:

Shape 1:

The first shape is a trapezoid. We know the area of the trapezoid is `(1/2) h (a + b)`

Here a and b are the base lengths. A = 6 cm. b = 4 cm and the height is 5 cm.

So the area of the rectangle = `(1/2) 5 (6 + 4) ` = 25 cm2

Perimeter of the rectangle is = sum of all sides = 6 + 5 + 4 + 3 = 18 cm.

Shape 2:

The second shape is a rectangle. We know the area of the rectangle is l X w

Here length l = 6 cm and the width w = 3 cm

So the area of the rectangle = 6 `xx` 3 = 18 cm2

Perimeter of the rectangle is = 2 (l + w) = 2 (6 + 3) = 2 X 9 =18 cm.

From the above bath shape is having the same perimeter and different area.


I like to share this algebra word problem solver online free with you all through my article.

Monday, January 28, 2013

Pictures of Division Sets


In this article we shall discuss  pictures of division sets. Here, division is also meant by fraction of a whole. A division can be creation over to a decimal through dividing the upper digit, or numerator, during the lower digit, or denominator. Division is instead of as ratios, and significance for fraction which is one of the important math processes. Thus the division `3/5` is also used to point out the ratio 3:5 and the division 3 ÷ 5 as well.

How to do Pictures of Division Sets:

The pictures of division sets are shown given below that,

pictures of division sets

 
Having problem with Long Division Calculator Read my upcoming post, i will try to help you.



Example Problems Based on Learn Pictures of Division Sets:

The example problems based on learn about pictures of division sets are given below that,

Example 1:

How to learn about pictures of division for 277 divide by 8 sets?

Solution:

Step 1:

The given value is 277 divide by 8 sets.

Step 2:

Here, 277 divide by 8 sets is also denoted as 277/8.

Step 3:

Now, 277 divide by 8 sets is explain about using long division procedure pictures.

Here, using long division procedure pictures are shown given below that,

pictures of division sets

Step 4:

The final answer for pictures of division sets is 34.625.

Example 2:

How to learn about pictures of division for 197 divide by 6 sets?

Solution:

Step 1:

The given value is 197 divide by 6 sets.

Step 2:

Here, 197 divide by 6 sets is also denoted as 197/6.

Step 3:

Now, 197 divide by 6 sets is explain about using long division procedure pictures.

Here, using long division procedure pictures are shown given below that,

pictures of division sets

Step 4:

The final answer for pictures of division sets is 32.833







Understanding long division with decimals is always challenging for me but thanks to all math help websites to help me out.

Practice problems based on learn about pictures of division sets:

The practice problems based on learn about pictures of division sets are given below that,

Problem 1:

How to learn about pictures of division for 163 divide by 4 sets?

Answer: The final answer for pictures of division sets is 40.75

Problem 2:

How to learn about pictures of division for 52 divide by 4 sets?

Answer: The final answer for pictures of division sets is 13.